PLEASURE TEST REVISION SERIES XI – 02

By OP Gupta [+91-9650 350 480]

Time: 180 Minutes

Max.Marks: 60

SECTION – A (Short Answer Type)

- **Q01.** Find the general solutions of sec x = 2.
- **Q02.** Sum of an infinite GP is 3 and sum of the squares of its term is also 3. Find the first term and common ratio.
- **Q03.** If coefficient of $(r+1)^{th}$ term in the expansion of $(1+x)^{2n}$ be equal to that of $(r+3)^{th}$ term, then find the value of n-r.

Q04. Write the constant term in expansion of $\left(x^3 - \frac{1}{x^2}\right)^{15}$.

- Q05. A die is tossed twice. What is the probability of getting a number greater than 4 on each toss?
- **Q06.** Write $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}\right\}$ in the set-builder form. Hence state the number of subsets it can have.
- **Q07.** Find the domain of the function: $f(x) = \frac{x^2 + 3x + 5}{x^2 5x + 4}$
- **Q08.** Solve: $3x^2 2x + 5 = 0$.
- **Q09.** Evaluate: $\lim_{x\to 2} \frac{x^2-4}{|x-2|}$, if it exists.
- **Q10.** Write the negation of the following statement: "The square root of every positive number is positive."

SECTION – B (Long Answer Type)

- **Q11.** Using principle of mathematical induction, prove that $10^n + 3.4^{n+2} + 5$ is divisible by 9.
- Q12. (i) If $B \times A = \{(1,a), (2,a), (5,a), (2,b), (5,b), (1,b)\}$ then, find the sets A and B. Hence find $A \times B$. (ii) If $A = \{3, 5, 7, 9, 11\}$, $B = \{7, 9, 11, 13\}$ and, $C = \{11, 13, 15\}$ then, find $(A \cap B) \cap (B \cup C)$.
- **Q13.** The foot of \perp^{er} from the origin to a straight line is at the point (3, -4). Write the equation of line.
- Q14. Find the image of (4, -13) in the line 5x + y + 6 = 0.
- Q15. Find e of an ellipse if the distance between its foci is same as the length of its latus-rectum.
- **Q16.** If the coefficient of r^{th} , $(r+1)^{th}$ and $(r+2)^{th}$ terms in the binomial expansion of $(1+x)^{14}$ are in AP, find the value of r.
- Q17. Prove that: $\cos 2x \cos \frac{x}{2} \cos 3x \cos \frac{9x}{2} = \sin 5x \sin \frac{5x}{2}$.

OR If $\sin \theta = -\frac{4}{5}$, $\pi < \theta < \frac{3\pi}{2}$ then find the remaining trigonometric functions.

- **Q18.** Find the coefficient of x^{20} in $(1+3x+3x^2+x^3)^{20}$. Also find the middle term(s).
- Q19. How many words, with or without meaning, can be made from the letters of the word 'SUNDAY', assuming that no letter is repeated, if
 - (a) 4 letters are used at a time
 - (b) all letters are used at a time
 - (c) all letters are used but first letter is a consonant
 - (d) 4 letters are used at a time but first letter is a vowel?
- **Q20.** Solve graphically: $x + 2y \le 10$, $x + y \ge 1$, $x y \le 0$, $x \ge 0$, $y \ge 0$.

- **O21.** A college awarded 38 medals in Football. 15 in Basketball and 20 in Cricket. If these medals went to a total of 58 men and only 3 men got medals in all the three sports, how many received medals in exactly two of the three sports?
- **Q22**. A(1,2,3), B(0,4,1) and C(-1,-1,-3) are the vertices of a triangle ABC. Find the point at which the bisector of the angle $\angle BAC$ meets the side BC.

SECTION – C (Very Long Answer Type)

Q23. Evaluate the given limit: $\lim_{x \to 2} \frac{3^x + 3^{3-x} - 12}{3^{3-x} - 3^{x/2}}.$

Differentiate using definition of derivatives: $\csc\left(2x - \frac{\pi}{4}\right)$. OR

- In the binomial expansion of $(x-y)^n$, $n \ge 5$, the sum of fifth and sixth terms is zero. Find the ratio **Q24**. of x to y.
- **O25**. The arithmetic mean between two nos. is A and S is the sum of n arithmetic means between the same nos. Deduce a relationship between A and S.

OR If
$$\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$$
 is GM between *a* and *b*, find *n*.

- The foci of a hyperbola coincide with the foci of $\frac{x^2}{25} + \frac{y^2}{9} = 1$. Find the equation of hyperbola, if its **O26**. eccentricity is two.
- Find the polar form of the complex number: $\frac{-1+i}{\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}}.$ **O27**.
 - Find the real value(s) of θ such that $\frac{3+2i\sin\theta}{1-2i\sin\theta}$ is purely imaginary. OR
- Given that \bar{x} is the mean and σ^2 is the variance of n observations $x_1, x_2, ..., x_n$. Prove that the mean **Q28**. and variance of the observations ax_1 , ax_2 , ax_3 , ..., ax_n are $a\overline{x}$ and $a^2\sigma^2$, respectively, $(a \neq 0)$.
- If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is Q29. the probability of forming a number divisible by 5 when, (i) the digits are repeated?

(ii) the repetition of digits is not allowed?

#Prepared By: OP Gupta [Electronics & Communications Engineering, Indira Award Winner] Contact on: +91-9650 350 480, +91-9718 240 480 Follow me on twitter Email id: theopgupta@gmail.com @theopqupta Visit at: www.theOPGupta.WordPress.com , www.theOPGupta.blogspot.com My various works on Mathematics can be obtained from various websites such as www.cbseguess.com, www.meritnation.com, www.scribd.com/theopgupta

HINTS / ANSWERS

Q01.	$2n\pi\pm\frac{\pi}{3}, n\in\mathbb{Z}$	Q02.	3/2, 1/2	Q03.	1	Q04.	- ¹⁵ C ₉
Q05.	4/36	Q06.	$\{ x : x = \frac{n}{n+1} $	where	n is a natural nu	umber ai	nd $1 \le n \le 6$ }
Q07.	$R - \{1, 4\}.$	Q08.	$\frac{1\pm i\sqrt{14}}{3}$				
Q09. Q10.	Limit doesn't exist as Left hand limit = -4 and Right hand limit = 4 . The square root of every positive number is not positive.						
Q12.	(i) $A = \{a, b\}, B = \{1, 2, 5\}, A \times B = \{(a, 1), (a, 2), (a, 5), (b, 1), (b, 2), (b, 5)\}$ (ii) $\{7, 9, 11\}$						
Q13.	3 x - 4y = 25	Q14.	(-1,-14)	Q15.	$\frac{\sqrt{5}-1}{2}$		
Q17.	OR $\cos \theta = -\frac{3}{5}$, tak	$n\theta = \frac{4}{3},$	$\csc \theta = -\frac{5}{4}, s$	$\sec \theta = -$	$-\frac{5}{3}$, $\cot \theta = \frac{3}{4}$		
Q18.	${}^{60}\mathrm{C}_{20}$, ${}^{60}\mathrm{C}_{30}x^{30}$	Q19.	(a) 360	(b) 72	0 (c) 480)	(d) 120 Q21. 9
Q22.	Let the bisector of the angle $\angle BAC$ meets the side BC at point D. Then use, AB/ BC = BD/DC to find the ratio in which D divides BC. Hence find the coordinates of point D using section formulae.						
Q23.	$-4/3$ OR $-2\cos\theta$	ec(2x -	$\left(-\frac{\pi}{4}\right)\cot\left(2x-\frac{\pi}{4}\right)$	$\left(\frac{\pi}{4}\right)$	Q24.	[<i>n</i> – 4]	: 5
Q25.	S = n A. OR	$n = \frac{1}{2}$		Q26.	$\frac{x^2}{4} - \frac{y^2}{12} = 1$		
Q27.	$\sqrt{2} \left[\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right]$		OR $\theta = n\pi$	$+(-1)^{n}$	$\frac{\pi}{3}, \theta = n\pi + (-$	$(1)^n \frac{4\pi}{3}$ v	where $n \in \mathbb{Z}$.
Q29.	(i) 99/249 (ii) 18/	48.		N			
	0		50				